

University	
 of	
 Notre	
 Dame	

Final	
 Project	
 Report	

Team	
 Baja	

Jung	
 Whan	
 (Stephen)	
 Kim,	
 Patrick	
 Whalen,	
 Michael	
 Manno,	
 Matt	
 Creehan	

5/7/2014	

	

Team Baja

1 5/7/2014

Table of Contents

 1 Introduction page 3

 1.1 Problem Description page 3

 1.2 High Level Solution Description page 4

 1.3 Results Overview page 5

 2 Detailed System Requirements page 7

 3 Detailed Project Description page 8

 3.1 System Theory of Operation page 8

 3.2 System Block Diagram page 9

 3.3 System Packaging page 10

 3.4 Power Supply page 12

 3.5 Board Design page 14

 3.6 GPS Module page 17

 3.7 RPM Sensors page 18

 3.8 LCD Screen page 21

 3.9 SD Card page 24

 3.10 Interfaces page 27

 4 System Integration Testing page 28

Team Baja

2 5/7/2014

 4.1 Testing page 28

 4.2 Results page 31

 5 Users Manual page 33

 5.1 How to Install page 33

 5.2 How to Setup page 34

 5.3 How to Tell if Working/Troubleshoot page 34

 6 To-Market Design Changes page 35

 7 Conclusion page 36

 8 References page 39

 9 Appendix page 40

 9.1 MDD File System Library Software page 40

 9.2 Main Baja Project Code, Demonstration.c page 41

 9.3 LCD Code, newmain.c page 66

Team Baja

3 5/7/2014

1 - Introduction

1.1 Problem Description

The Notre Dame Baja team is a Baja car design team staffed with Notre Dame

students who design and race their own Baja vehicle against other colleges around the

country. These competitions consist of a variety of scoring areas, including dynamic

events, such as hill climbs and maneuverability tests, and static events, such as design

evaluations and presentations. Historically the Notre Dame team has performed well,

finishing 32nd out of 118 teams in 2012 at their annual competition in Peoria, Illinois. The

team is shooting for a top-10 finish this summer at the competition in Peoria, Illinois.

 One feature that could potentially assist the Baja team in their efforts is an

electrical design embedded within the Baja car. For this year’s competition, the Notre

dame Baja team wanted to install a system to improve the design score points by the

judges before the race as well as the systematic analysis of their race through the

electrical system data. The mechanical engineering Baja team proposed the

cooperative design project with the electrical engineering major students to the

Electrical Engineering Senior Design Professor Michael Schafer. As the electrical

engineering team, we were responsible for the implementation of this electrical system,

including two Hall effect sensors, a GPS (Global Positioning System) chip, an SD

(Secure Digital) card, LCD display, several buttons and switches, and the box

containing all the sub-components. The goal was to complete the comprehensive

design process by May 2nd, the final demonstration day, and to help the Notre Dame

Baja team achieve its top-10 finish in the competition this summer. The Baja Design

Team Baja

4 5/7/2014

Process was a two-semester long project (Fall 2013, Spring 2014) to meet expectations

outlined in discussions between the mechanical engineering “Notre Dame Baja Team”

and the electrical engineering “Team Baja.”

1.2 High Level Solution Description

 In order to meet the expectations of the mechanical engineering team, we

designed a system that would be mounted inside the driver’s cabin of the Baja car for

easy viewing and access for the driver. The system was designed to be protected from

the harsh Baja environment yet compact and lightweight. The system includes an LCD

screen on the front for the driver to view speed and lap data as well as an SD Card

inside the module intended for storing and uploading vehicle speed, GPS, lap, and rpm

data. Hall effect sensors would extend from within the box so that they could be

mounted in the vehicle to record wheel and engine rpm using magnets mounted on the

vehicle. The module includes an external power switch, a lap button for recording lap

time, and is powered by a two-cell lithium ion battery.

 The system has three modes. The first, “rest mode,” is the standard mode that is

loaded upon startup in which the system simply displays velocity as the car drives. The

second mode, “race mode,” allows the user to see vehicle speed and lap time and

stores speed, GPS, rpm, and lap data to an SD card every second. The final mode,

“test mode,” would allow the user to track rpm data on an SD card at a much faster rate

to observe gear shifts during a 10-20 second test.

Team Baja

5 5/7/2014

1.3 Results Overview

The final design of our electrical system met the original expectations in most of

the areas. The details will be illustrated in the Detailed Systems Requirements Section .

However, at the same time, the electrical design team abandoned some of the initial

plans, including the SD card and several buttons, due to the time constraints at the end

of project timeline.

First of all, the Mechanical Baja team requested the lightweight electrical system

to maximize the vehicle’s speed in the race. In our electrical system, we managed to

use the light sub-components, such as a wooden-frame container and a Hall effect

sensor mounted on a small size breadboard circuit. Moreover, our design focused on

the durability of a system container to be mud resistant throughout the competition. Any

holes or openings of a wooden container were filled with Silicon paste to avoid any

water or mud leakage into the sub-components inside a wooden container of our

electrical system.

The display output was a success and displays the data we originally planned to

display, including the lap time, velocity, and GPS fix status. The UART connection with

the GPS module worked very well, and we were successful in finding a fix outside. In

addition, the demo version of our module was able to display RPS (Rotations Per

Second) for the two rpm sensors. We chose to display this to demonstrate that they

were functioning correctly since the SD data was not available.

Unfortunately, after getting it to work smoothly on the demo board, our SD card

subsystem did not work adequately on our new board. The microcontroller consistently

Team Baja

6 5/7/2014

sent strange signals on the SPI4 clock pin, which we believe caused the issue. Because

this hardware problem was discovered so late in the process, we were unable to resolve

it in time for the demonstration.

The system interface is also simple for the users to control as there are buttons

to choose the data collection mode and to reset the data display on screen. Because we

spent so much time trying to get the SD card to work, we did not get a chance to

implement the button software which had worked sufficiently on our development board.

Because the SD card did not work in the final demo, we decided to prioritize other

things (like printing rpm data) over the buttons since their functions were tied to the SD

card.

With the exception of the SPI4 interface, the rest of the electrical power system

worked very well. The two-cell lithium ion battery was easily chargeable and powered

the board as expected. All of the subsystems received the correct power, and after

making some changes to the original design, the board behaved as we intended it to.

Finally, the electrical engineering design team developed the system under the

budget requirement. Our overall spending was well below the maximum budge limit.

One of the reasons was that some system parts were provided by Professor Schafer

without extra charge. For example, a display screen was provided which has an

estimated 30 to 40 dollar purchase cost. However, even after adding the possible

additional costs for the parts our design team used for free, the final budget for electrical

system was still below the maximum budget limit.

Team Baja

7 5/7/2014

2 - Detailed System Requirements

The critical aspect of the judging that the Baja mechanical engineers hoped to

improve was the car’s electrical design. In order to best serve them, it was important for

our team to meet with the mechanical engineers to clarify the project requirements. The

descriptions below in Table 1 summarize the detailed system requirements for each

sub-component.

Table 1. System Requirements

System Requirements

Requirement Description Result
Hall Effect Sensors
 - Must measure both wheel rpm and engine rpm

- Must provide an updated information every second
- Must be capable of also providing rpm data at a
faster rate for “test mode”

Complete
Complete
Complete

GPS/SD Card
 - Must provide the vehicle data, including velocity,

rpm, and GPS coordinates every second
- SD Card must be easily accessible/removable
- Must save the GPS data into the SD card

Complete

Complete
Incomplete/
Hardware issues

Display
 - Must display the key data on screen, including

velocity, lap time, data collection mode, and fix
- Must update the information every second
- Must change the display format and lap information
depending on the buttons pushed

Complete

Complete
Incomplete/
issues with
buttons

Container
 - Must contain all the sub-components within the

container
- Must be mud resistant
- Must have the buttons placed outside of container
for the display control

Complete

Complete
Complete

Battery
 - Must provide sufficient voltage to power the

electrical system
- Must be rechargeable
- Must be independent from the voltage supply from

Complete

Complete
Complete

Team Baja

8 5/7/2014

Baja car

Buttons
 - Must have the button for the power On/Off

- Must have the button for lap time and split
- Must have the button to switch between test and
race mode
- Must have a button to return to “rest mode”

Complete
Incomplete
Incomplete
Incomplete
Incomplete

 One requirement not fully detailed in the System Requirements is how the

module would be mounted in the car. Because design is not yet complete on the Baja

car and the mechanical engineering team was not yet sure how they wanted to mount

the module, we designed the module as a rectangular container which could then be

mounted near the driver. Another idea raised by the mechanical engineers was to 3D-

print a steering wheel to hold the screen while the rest of the module is mounted

separately. It remains to be seen how the mechanical team plans to deal with mounting

the device.

3 - Detailed Project Description

3.1 System Theory of Operation

 The module we designed turns on with either the external power switch or the

internal switch on the board. As soon as the module turns on it should display the

velocity (00.00 if it does not have a GPS fix), the mode (“race”), current lap, (counting

upwards each second), and previous lap (nothing displayed). GPS fix status should be

displayed in the bottom right, displaying “Fix” if it has located satellites or “No Fix” if not

enough satellites have been found to provide data. Revolutions per second (rps) for

each rpm sensor will be displayed in the top right of the screen. Any time a magnet

crosses one of the sensors (within a couple centimeters), the rps value should jump to

Team Baja

9 5/7/2014

the corresponding value for how many times the magnet passed the sensor in that

passed second. If the GPS receives a fix, the “No Fix” originally displayed on the screen

should change to “Fix,” and the speed should begin to display on the screen in mph.

 Unfortunately there are a few bugs in the current model. First of all there are

some issues with cursor locations so the screen will often print in the wrong location.

Second of all, none of the values will display on the screen until the “reset” button on the

board is pressed, so although the power switches are capable of turning the device on,

the “reset” button is needed to run the code. Lastly, the SD capabilities are not currently

integrated on the board so those functionalities (and the corresponding buttons) are not

in full working mode. The System Block Diagram and State Diagram in Figures 1 and 2

below will illustrate how the system would work had the SD card been integrated.

3.2 System Block Diagram

Figure 1. System Block Diagram of Proposed Design

Team Baja

10 5/7/2014

Figure 2. State Diagram of Proposed Design

3.3 System Packaging

 There were several environmental concerns when designing the physical

container that would house our system. Primarily, it needed to be water and mud

resistant in order to protect the elements within from any dirt and debris during the

course of the race. Secondly, the box needed to be sturdy and reliable, so as to not

break or open during the rough race. Finally, the box needed to be large enough to

safely house all of the necessary elements for our system. Accordingly, the box shown

below in Figures 3 and 4 was selected and designed.

Team Baja

11 5/7/2014

Figure 3: Container Exterior

Figure 4: Container Exterior

 Physically, this box meets all of the qualifications described above. The box is

made of a composite wood, with a sturdy metal frame, assuring that it can hold up in the

stressful race environment. Equally as important, the box has a locking mechanism,

which can bee seen on its front. By having a locking mechanism, the box allows access

to its interior, most notably the SD card, while maintaining securely closed when locked.

The box was not completely waterproof, however, especially after holes were cut for the

screen and buttons. Silicon sealant was used to waterproof these holes, helping to

insure that no water could get into the box. This box was also large enough to house all

Team Baja

12 5/7/2014

of our components, with enough room to hold the wires and battery. Also, being made

of wood, the box allowed for the GPS module to be mounted within the box rather than

externally, allowing for addition protection for that module. Furthermore, the box is

easily opened and closed. This makes it easy for the Baja team to access the SD card

when they’re trying to analyze their data.

 The buttons are all mounted in the side of the module and held in place with

sealant, while the GPS and battery are held steady with Velcro strips. The board is

elevated off of the base of the box with spacers and screwed tight to ensure that it does

not move around during use. The LCD screen is also screwed into the box and is also

sealed around the edges and screws to keep as much dirt out as possible. The rpm

sensors extend from a hole in the board, out from which they can extend to wherever

they would need to be placed on the Baja vehicle. The hole for these sensors was left

unsealed to enable the mechanical engineering Baja team to easily pull those out in

case they needed to be moved or adjusted. Eventually, the team will have to seal that

hole with sealant as well once the final setup is determined.

3.4 Battery System

 The system is powered by a two-cell lithium ion battery placed within the primary

container. The battery supplies 7.9V when fully charged, more than enough to power all

of the components on the board. The power system also contained two power switches,

wired in parallel. One of these switches was placed directly on the board, and was used

primarily during the testing and development of the system. The other switch was panel

mounted on the box, and was used during operation of the system. In order for the

Team Baja

13 5/7/2014

system to be powered off, both switches need to be in the off position. If either switch is

on, the board receives power. The battery was attached to the board via a 2-pin Molex

connector which ran to the switches, and to the regulators from there. Originally we had

planned to also include a micro USB adapter to power the board as well, during the

testing. This plan was eventually scrapped, as the battery worked just fine. We were

able to abandon this feature of the design, as it was only included for testing purposes,

and was not essential to the final design.

The system needed both 3.3V and 5.0V running to multiple locations across the

board. In order to generate each of these voltages, two different voltage regulators

were used, a 3.3V regulator and a 5.0V regulator. Two regulators, rather than a

regulator and a DC-to-DC converter, were chosen for our voltage sources so as to

insure that sufficient current was supplied to all the elements of the board. A DC-to-DC

converter would have caused very low current on the 5.0V supply, possibly causing

performance issues with the 5.0V components. A schematic for the voltage regulators

and power source is included below in Figure 5:

Figure 5: Power Supply Schematic

Team Baja

14 5/7/2014

The microcontroller, the SD card, the GPS module all required 3.3V to operate,

while the LCD screen and the Hall Effect sensors each required 5.0V to operate. In

order to run the traces to the necessary locations, the 5.0V trace was run along the

perimeter of the board, while the 3.3V traces ran along the interior of the board. This

was primarily due to the location of the microcontroller in the center of the board.

The original schematic mistakenly had 5.0V running to a pin on the SD card

adapter, a pin which should have been grounded. This mistake caused the board to

overheat almost immediately when the SD card was inserted, however once this

mistake was corrected the board power system functioned properly. It is worth

mentioning that, once the voltage level of the battery drops below the 5.0V necessary

for the 5.0V regulator, the components which require 5.0V to operate no longer function

properly, causing the system to shut down. During our testing, we found that the battery

would provide 8 to 10 hours of charge before this became an issue.

3.5 Board Design

The physical board design consisted of five essential elements: the

microcontroller, the SD card adapter, the power source management, the circuit used

by the Hall effect sensors, and the Molex connectors for various sensors and displays.

In addition to these components, the board also had 3 mounting holes, which allowed

for the board to be secured and mounted properly within the container. The board

design is displayed below in Figure 6:

Team Baja

15 5/7/2014

Figure 6: Board Design

The first of these elements, the microcontroller, can be clearly seen mounted

near the center of the board. This location provided the maximum accessibility for all of

the other elements, allowing for each element to access the necessary pins. A

PIC32MX795 microcontroller was selected and used. This microcontroller was selected

for two main reasons. It was possessed enough pins to support all of the elements

necessary for our system. Also, it was the same microcontroller as was used on the

development boards, which made for easier transition and implementation of our

software from the development board to our board. The PicKit interface, in the extreme

bottom left of the board, is also mirrored off of the development board, along with the

reset button in the extreme top left.

The second component, the power supply management, can be seen in the left

portion of the board design. This component consists of the two voltage regulators for

3.3V and 5.0V, the on off switch, and two Molex connectors. The first Molex connector,

Team Baja

16 5/7/2014

on the left side of the board, was used to connect the battery to the board, providing the

necessary power. The second Molex connector, labeled “ON/OFF2” on the top left of

the board, ran to the external power switch. This section component will be described in

greater detail in the “Power Supply” section.

Thirdly, the SD card adapter covers the bottom right portion of the board, seen

above. This element was positioned such that, when the SD card was locked into the

adapter, it would not stick over the edge of the board, but when it was released, it would

hang slightly off the edge of the board. This was intended to provide maximum security

for the SD card during the bumpy ride and to ensure that it remains locked in place

during that time. Then, when the SD card is to be removed, it could easily be done, as

the card hung off the edge of the board. The SD card adapter was wired to the

microcontroller in an identical fashion to the way it was attached on the development

board, with the one exception being that the chip select pin was moved from B8 to B12.

This was done in an effort to ease the transition from the development board to our

board.

The circuit used by the Hall effect sensors can be seen in the upper right portion

of the board design. This circuit connects to the Hall effect sensors via two 3-pin Molex

connectors. The sensors would then be mounted close to the wheel or engine, and

send an analog signal back to the board. The circuit on the board would then generate a

digital signal from that analog signal, and send it to the board, to two external interrupt

pins. More detail on the operation of the Hall effect sensors can be found in the “RPM

Sensors” section.

Team Baja

17 5/7/2014

Finally, across the top of the board the various Molex connectors can be seen.

These connectors connected the various elements to the microcontroller. Six-pin Molex

connectors were used to connect the screen and GPS module, while two-pin

connectors were used to connect the various panel-mounted buttons. These Molex

connectors were selected for two main reasons. The actual connection is very secure,

insuring that it would not shake loose during operation. Secondly, the way the

connectors are designed, they can only connect when oriented the proper way. This

was a valuable feature, as it insured that the connector could not be attached upside

down, causing damage to both the microcontroller and the element.

3.6 GPS Module

 A major source of data for this system is the GPS module. For the GPS data, we

used a Mediatek-3329 that was provided by Professor Schafer. This system came with

a board attached and hooked up to out board with a six-pin Molex connector. The GPS

communicated with the microcontroller through UART pins. Below in Figure 7 is the

schematic detailing the pins used by the GPS system:

Figure 7. GPS Module Schematic

Team Baja

18 5/7/2014

The mediatek-3329 runs off of 3.3V and has an enable pin that must be set high to Vdd.

Once plugged in, the GPS will look for a fix, and when it finds enough satellites, begins

transmitting data from those satellites. Outside on Notre Dame’s campus, it typically

took me 2-5 minutes to get a GPS fix after a long period with no fix, but it was usually

much quicker when the fix had only been lost for a short period of time.

 The GPS sends a multitude of data at a rate of one update per second. Initially,

this data is sent as ascii strings. It is much easier, however, to use that data when it

comes in binary. Therefore out code sends the GPS a command to put it into binary

mode.

 In binary mode, the messages still come once a second, but the format is much

different. Some of the data available in this mode includes altitude, latitude, longitude,

velocity, date, UTC time, as well as prefixes to identify GPS messages and checksums

to confirm that messages have been read appropriately. Once the message comes in,

the relevant values (latitude, longitude, and speed) are stored in variables as unsigned

longs where they can then be sent to either the screen or SD card. Currently, the GPS

system is successfully able to interface with the LCD, indicating whether a fix has been

found and displaying velocity to the user.

3.7 RPM Sensors

 The requirement for this subsystem is the ability to measure RPM. Together with

the SD card subsystem, the rpm sensor subsystem must be able to record the

measured rpm data at one second intervals for race mode and faster for test mode. In

hardware, this is implemented by a simple Hall effect sensor and a series of magnets.

Team Baja

19 5/7/2014

An SEC SS49E Linear Hall effect sensor was used in this project. The magnets are

arranged on both the wheel and the engine such that as either the wheel or engine

rotates, the magnets pass the associated Hall effect sensor. The Hall effect sensor must

be placed close enough that the passing magnet changes the voltage over the sensor

appreciably; this distance should generally be lower than a half an inch.

 When a magnet passes the Hall Effect sensor, the voltage is changed from

nominal to a higher value. On the board, this signal acts as the non-inverting input of an

op-amp comparator. When not active, the voltage will be lower than the inverting input,

so a logical low, 0 V, is the output. When active, the output will be a logical high, 3.3 V.

The wheel sensor is connected to pin D11, external interrupt 4. The engine sensor is

connected to pin D10, external interrupt 3. This interrupts are set to trigger off the rising

edge of the input, the output of the comparator for the sensor.

 In the code for the project, the interrupts cause a counter associated with the

respective sensor to be incremented. It is this count that is stored to the SD card either

every second, for race mode, or more frequently, for test mode. The counter is cleared

after it has been written to the SD card in order to initialize the counter for the next RPM

data measurement. Actual RPM is calculated by accounting for number of magnets

used and recording period such that RPM = count/(number of magnets * the conversion

between the recording period and one minute). Below in Figure 8 is the schematic for

the rpm sensors.

Team Baja

20 5/7/2014

Figure 8. RPM Sensor Schematic

The SS49E Linear Hall Effect Sensor was chosen for this application because it

possesses a high degree of sensitivity and a very low rise/fall time. High sensitivity is

favorable because it allows a degree of variability in conditions for the strength of the

magnets and their distance from the sensor. The low rise/fall time is important because

it insures that the signal from one magnet will not affect the next magnet’s signal. The

sensor outputs near 2.5 V, so the op-amp comparators use 2.5 V as the inverting input.

In this way, when the sensor detects a magnet, the voltage will rise and the op-amp will

output 3.3 V. This subsystem was tested by placing an LED and a current limiting

resistor in parallel to the input pin of the microcontroller. The LED lights up with the

voltage change, ensuring that the physical circuit is functioning properly.

Team Baja

21 5/7/2014

3.8 LCD Screen

The LCD display used for our project was a Newhaven 4x20 serial liquid crystal

display module, part number NHD-0420D3Z-FL-GBW-V3. This screen was large

enough to display all of the relevant information to the driver, while still remaining small

enough to both fit properly in the box, and to properly interface with our selected

microcontroller. The screen was mounted in the lid of the box with 4 screws, one

through the mounting holes in each corner. It then connected to the board via a 6-pin

Molex connector, which was in turn connected to the SPI3 interface on the

microcontroller. We elected to use an SPI interface to program the screen, as we were

most familiar with that interface. Our familiarity enabled the programming of the screen

to go more smoothly than it would have had we been required to learn a new interface

from scratch.

Pin assignments for each of the 6 pins are as follows. The last two pins, pin 6

and pin 5, were connected to 5.0V and ground, respectively. From there, pin 4 was

wired to D3 on the microcontroller, and served as the MOSI pin for the LCD screen.

This pin is used to send the display data to the screen. Pin 3 was connected to D1 on

the microcontroller, and provided the clock signal for the screen to use. Pin 2 was

connected to D2 and provided the MISO signal to the screen. This pin was ultimately

unused, as the screen does not output data back to the microcontroller. Finally, pin 1

was connected to D4 on the microcontroller, and served as the chip select pin. This chip

select pin needed to be set low prior to sending data to the screen, and then high again

following the data transmission. These pin assignments were largely intended to mirror

Team Baja

22 5/7/2014

those used by the development board, once again easing the software transition from

the development board to our board. The assignments are shown below in Figure 9:

Figure 9: Screen Pin Assignments

The 6-pin Molex connector was again invaluable when creating the jumper

cables to connect the screen and board. The connector insured that it was impossible to

connect the pins upside down, wiring 5.0V to the chip select pin and so on. This

provided an extra layer of security to our board, helping to further insure that no

components were accidentally damaged or destroyed by a faulty connection.

In order to manipulate the screen and print in the correct places, we accessed

the commands provided in the product data sheet. These commands are displayed

below in Table 2:

Team Baja

23 5/7/2014

Table 2: LCD Screen Commands

These commands were sent with the snd_cmd() function included in newmain.c. This

function takes the command and parameter as inputs and sends those commands to

the LCD screen. While for the most part, the screen commands were successful, there

are some bugs with setting the cursor, as the cursor will jump to an incorrect location

every once in awhile. While we did not have too much time to research this issue due to

our SD issues, we believe this is an issue that can be fixed by tweaking the delays

within the program to ensure that no errors can materialize.

Team Baja

24 5/7/2014

 As of our demonstration, the screen displays velocity data, current lap, as well as

rpm sensors (in revolutions per second) every second. It also displays whether the GPS

has received a fix or not. In the final product, the rpm would not necessarily need to be

displayed, but since it could not be saved ad viewed we decided to display it. Once the

buttons are integrated, the lap button will switch the current lap time to the previous lap

section and restart the current lap time. The mode switch will be able to switch the

mode from “race” to “test” and vice versa.

3.9 SD Card

 The most tricky subsystem to work with on this project was the SD card. As the

mechanical engineers wanted an easy way to save, track, and store data, we proposed

an SD card system as a cheap and easy way to keep good records of their Baja tests

and races.

 In order to setup and write to an SD card, you must have an adapter. The initial

adapter we worked with was provided by Professor Schafer and connected to the

development board from its own board through a 12-pin connector. An image of the

schematic can be seen below in Figure 10:

Figure 10. Development Board SD Card Adapter

Team Baja

25 5/7/2014

For our board, however, we decided to skip having a separate board and put an SD

card adapter right on the board. This allowed us to make a more compact design while

still making it easy to open and remove the SD card.

 The SD card operates on 3.3V and communicates through SPI. In order to setup

and write to an SD card with a FAT library, the best way is to download Microchip’s

MDD library. This library contains a host of functions for initializing, configuring, and

writing to an SD card. After successfully creating files using just the MDD library

functions, last semester, the first step this semester was to create files using the GPS

data from the mediatek3329.

 On the development board, we had good success with linking the GPS and SD

systems. After many initial issues, we effectively got the SD card printing consistant

data every second to files created in the software. An example of this data can be seen

below in Figure 11:

Team Baja

26 5/7/2014

Figure 11: SD-GPS System Integration Success

The created file is a .csv file which can easily be opened in excel and converted to an

excel file. The file in Figure 11 was generated by walking around DeBartolo quad with

the device in my hands. Looking at Figure 11, the SD card saved time in seconds,

velocity, as well as GPS coordinates. With that data I was able to convert it to the

correct units and plot a velocity versus time graph and plot my travelling course within

only a few minutes.

 Unfortunately the SD card software did not seem to cooperate with our new

board. The SPI communication repeatedly failed, and we could not seem to diagnose

what was wrong. Finally we found that the peak voltage of the SPI4 clock was only 1.2-

1.3V. We believe that something must’ve happened to the microcontroller that messed

Team Baja

27 5/7/2014

up the clock pin, and we were unable to resolve this issue in time. We are hopeful,

however, that with a new microcontroller, the SD subsystem will succeed again.

3.10 Interfaces

 Though our “lap” and “stop” buttons are not fully integrated onto the new board,

once the SD system is fixed, they become very important. The “lap” button signals when

a race starts and after that signals when a lap is complete. This signal tells the screen

when to shift lap data and the SD system when to save lap data. This process continues

until the “stop” button is pressed, sending the device back into its standard operating

mode and signaling that the race is over.

 Both buttons are implemented similarly from a physical circuit perspective. When

the button is pressed, a logical high, 3.3V, is connected to the appropriate pin. When

the button is not pressed, there is an open circuit on the pin. Below in Figure 12 is a

schematic of the buttons.

Figure 12. Button Schematic

Team Baja

28 5/7/2014

The lap time button is connected to pin D8, external interrupt 1. The stop or done button

is connected to pin D9, external interrupt 2. The interrupts themselves only set variables

to indicate to the main program what should be done next. The lap button’s interrupt

ultimately causes the current lap time to be recorded to the SD card, displayed as the

previous lap time, and finally cleared to set up for the next lap. The done button

concludes operation of the device at the end of a race.

4 - System Integration Testing

4.1 Testing

 After soldering all of the components onto the board as was shown on the

original schematic, we began testing all of the essential subsystems, starting with the

3.3V and 5.0V regulators. During our initial testing, we found that the 3.3V regulator was

functioning properly, but the 5.0V regulator was not functioning correctly, as the 5.0V

trace was reading at 7.9V, the same voltage as the battery. This was a fortunate break,

as the 5.0V trace did not run to any components directly, but rather to various Molex

connectors, which in turn would run to the components. Because these connectors were

open during this stage of the testing, no damage was done by the 7.9V on the board in

place of 5.0V. Reviewing the Eagle schematic and board design, it came to our

attention that two of the pads on the voltage regulator were connected to the same

ground via, causing an effective short between these two pads and preventing the

regulator from functioning properly. By removing a resistor connected to the faulty

region, the issue was successfully resolved. Both the 3.3V and 5.0V regulators were

functioning properly. While soldering the board it also came to our attention that there

Team Baja

29 5/7/2014

was an extra 100000Ω resistor, causing two of these resistors to be wired in parallel.

While this error did not cause any large issues with voltages, it was omitted from the

board while soldering in an effort to maintain accuracy between our board and the

development board.

 After fixing the two voltage regulators and insuring that the proper voltages were

being delivered to each component on the board, we turned our attention to the next

issue. When the SD card was inserted into the SD card adapter, the board got very hot,

and the problem could only be solved by the removal of the SD card. Once again

turning to the schematic and board design, we again noticed that there was an incorrect

trace on the board. One of the pins on the SD card adapter, the ID pin, was incorrectly

wired to 5.0V, when it should have been in face wired to ground. Cutting the trace on

the board between 5.0V and the ID pin on the SD card adapter resolved this issue,

allowing the SD card to be safely inserted without causing the board to overheat.

 Now that the board was wired properly, and the proper voltages were being

delivered to each component, we began to test the various subsystems on our board.

Several of these transitions went off without a hitch. The software and hardware for both

the LCD screen and the Hall Effect sensors transferred from the development board to

our board perfectly, with minimal to no changes necessary in the software. One thing

which was off about the LCD screen, on both the development board and on our board,

was that, after some time, the screen would print values to the wrong location. The time

it took for this to occur would vary, but after playing with the delays in the code we

managed to get it to last for upwards of one minutes before these errors would begin to

Team Baja

30 5/7/2014

occur. There was no readily apparent cause for this in the software, but due to the

consistency across both boards, we are confident that this was a software issue.

 We also encountered issues when attempting to integrate both the GPS and SD

card subsystems into our board. The SD card adapter, which was connected to the

SPI3 interface, was getting a faulty clock signal. On the original development board, the

voltage on the clock signal cycled between 0.0V and 3.3V, between 0 and VDD, as was

expected. On our board, however, the clock signal cycled between 0.0V and around

1.3V, which was well below the recommended voltage range for the clock signal in the

SD card spec sheet. This problem we believe to be at the heart of our issues in getting

the SD card to properly receive and send signals, ultimately resulting in the inability to

use that subsystem on our board. We believe the root cause of this issue to be

hardware related. The issues with the GPS however, were thankfully able to be

resolved. Upon initial implementation of the GPS module into our board, we noticed that

the module appeared to be triggering the MCLR pin every second, as the program

seemed to reset every second. Through testing we were able to determine that the

issue wasn’t a short to the MCLR pin, but was instead was something within the SD

functions was causing the problem. Once the SD card functions were commented out,

the GPS module functioned properly, sending and receiving messages to and from the

microcontroller.

 Once we had determined which of the subsystems we could successfully

integrate together, we assembled the system and mounted it on a bike, hoping to further

test how well the functioning subsystems had been integrated together. Our bike test

Team Baja

31 5/7/2014

was able to successfully demonstrate that, aside from the SD card subsystem, the

system had been integrated successfully. The GPS and RPM modules were returning

accurate data, and the information was displaying successfully on the screen. Similarly,

the lap counter was accurately counting seconds, and displaying the cumulative count

on the screen.

4.2 Results

 After resolving as many of the implementation issues as possible, we were able

to test the system as a whole. During this testing we were able to show that we met

most of the design requirements. Beginning with the physical system, we met the

environmental requirements, designing a container which was both sturdy and

waterproof. The container was also of reasonable size, and could easily be mounted on

the car as a dashboard of sorts. All the buttons and switches requested by the Baja

team were mounted in reasonable locations, and all of the internal elements were able

to fit within the container. The container could close securely during the race, but the

interior could also be accessed easily after the race, courtesy of the locking mechanism

on the box. The physical container met all of the designated design requirements.

 The power system also met all of our design requirements. The two-cell lithium

ion battery was able to provide sufficient voltage over an 8-10 hour timeframe, which

successfully covered our initial design requirements. Similarly, our voltage regulators

met our design requirements, successfully creating 3.3V and 5.0V signals on the board

to power all of the various subsystems.

Team Baja

32 5/7/2014

We also managed to meet all of the data collection requirements. The GPS

module was properly initialized and put into binary mode. From there, it was able to

return all of the requested data to the microcontroller, most notably velocity, longitude,

and latitude. These values were then converted into reasonable units, primarily miles

per hour for the velocity value. Both of the Hall effect sensors also functioned fully as

expected. As was demonstrated when tested on a bicycle, the Hall effect sensors could

successfully read the magnet on the wheel and trigger the interrupt in the code when

mounted properly. By triggering this interrupt, the Hall effect sensors could generate an

accurate rpm for both the engine and the wheels, with some unit conversion. The lap

counter also kept track of the lap time successfully, accurately counting up with each

passing second.

Aside from beginning to print values to the wrong locations after several minutes,

the LCD screen also met all of our design requirements. It was large and bright enough

to be easily read during the bike test. While this does not completely confirm that the

screen will be able to be read once implemented on the Baja car, it does provide strong

evidence that it will be sufficient. The screen also was able to display the collected data,

displaying accurate velocity and fix information from the GPS module, and accurate rpm

information from both of the Hall effect sensors. While displaying the rpm information

was not an original design requirement, we chose to display the information as a means

to prove that both the screen and the Hall effect sensors were functioning properly,

which was an essential design requirement. Finally, the lap time was displayed

Team Baja

33 5/7/2014

successfully on the screen, showing the proper time, and correctly updating it every

second, as was necessary.

The SD card issues are where we failed to meet design requirements. Without

the ability to interface with the SD card, we were not able to meet several design

requirements. First, and most obviously, we could not generate files on the SD card for

the Baja team to analyze later. Secondly, the various modes which the system could be

put into were ultimately useless without the SD card functioning properly, as the modes

dealt primarily with the data collection rate to the SD card. While we were able to meet

most of our other design requirements, the shortcomings of the SD card subsystem

inhibited the overall efficacy of the system.

5 - Users Manual

5.1 How to Install

 In order for this module to be installed, the mechanical engineering Baja team will

be mounting it near the driver’s seat in their Baja vehicle. It is important that vibrations

are minimized for the device, and that it is kept as high as possible to prevent any

puddles or mud from splashing onto it. Furthermore, the rpm sensors need to be

mounted near the wheel and engine of the Baja vehicle. On the vehicle, the team will

have to place magnets where the engine and wheels revolve so that the magnets can

trip the rpm sensors each revolution. Furthermore, the battery for the device should be

charged overnight to minimize the risk of losing data due to a power failure.

Team Baja

34 5/7/2014

5.2 How to Setup

 In its current state there is not much setup involved with the module. As long as

the battery is powered, the device must simply be turned on with one of its two on/off

switches. Because of the weird issue with the program not fully resetting, the user

currently has to press the reset button to get everything to display correctly. In order for

the velocity to display, the user must go outside and wait for the screen to indicate that

a GPS fix has been found. Once this has been found, all of the functions (seconds

counter, rps, and velocity) should be working properly.

5.3 How to Tell if Product is Working

 If the product is working, the screen will indicate that the GPS has found a fix. If

this is not the case, open the device and look for the green LED indicator on the GPS

module (mounted on the top of the box). The LED is on the opposite side so it might be

best to un-velcro the module to check the light. If the LED light is flashing, no fix has

been found, and it probably indicates that the location in which the user is trying to use

the device does not have adequate GPS coverage. If, however, the light is off, that

indicates that the GPS is receiving a fix, but there must be a software issue causing the

screen to not recognize that a fix has been found.

 Another thing that could happen is that the battery could run out. Usually the first

indicator of a low battery is that the LCD screen gets more faint. This occurs because

the LCD runs on 5V. If this occurs, turn the module off, unplug the battery, and plug it

into the charger for a couple hours.

Team Baja

35 5/7/2014

6 - To-Market Design Changes

Most of the sub-components are functioning as our design team originally

planned. However, a few more improvements are needed for this to be a market-ready

product. The list below briefly summarizes the possible improvements, followed by a

detailed description.

The prototype version of the electrical system contains a LCD screen displaying

the key data values. However, the electrical system must have capability not only to

display an instant key data values, but also to collect the data and save it into the SD

card as the mechanical engineering Baja team plans to use the data to estimate the

CVT ratio to enhance its maximum driving performance. As mentioned earlier, the

current version of microcontroller board has an irregular voltage supply issue, which

determines the clock signal on the SPI. Before introducing the electrical system to the

market, the SD card issue will be resolved so that the future users can collect and save

the key data, including GPS information and rotations per second, into the SD card for

the vehicle performance analysis.

In the more distant future, another option that would solve the storage problem is

to transition to flash memory. With flash memory, the Baja team would not have to deal

with the complicated MDD filesystem library, and they would also not have to open the

device and access the board to get data. With a cord for outputting data saved in flash

memory, the board would be much safer, as hands reaching in to grab the SD card all

the time could cause issues.

Team Baja

36 5/7/2014

 The electrical system currently includes four buttons placed on the surface of the

system container. In order for the module to be ready for the Baja team, these buttons

need to be properly integrated. With the code we have already developed working on its

own, button integration to the system should not be a big challenge.

 Another change that might be beneficial is the location of the cords for the

buttons and sensors. If we could go back in time, we would have planned out better

where the board would be in the box and where the different buttons and switches plug

into the board before implanting them in the box. Because we sort of planned as we

went along with the container, some of the cords are cluttered because their

corresponding sensor, button, or device, is not in an optimal location in the box.

 One final idea for change would be to use a different screen. One issue that we

had with this screen was that the cursor would not always end up exactly where we told

it to go every time. Consequently, the screen becomes more and more cluttered with

mistakes as time passes. The issue with our current screen is that it is unable to send

data to the microcontroller in order to describe its state. It would be nice if before every

print to the screen we would be able to check to see if the cursor is exactly where it is

supposed to be. If we could find a screen with these capabilities, I think we would see

much fewer issues with printing in the wrong location.

7 - Conclusion

The requirements of the electrical system are based on the request from the

mechanical engineering Baja team. The electrical engineering design team followed a

necessary process to meet these requirements for the Baja team to have a successful

Team Baja

37 5/7/2014

result in this year’s Baja car competition. Our completed prototype demonstrates most

of the criteria suggested by the mechanical engineering Baja team. However, there are

some sub-components which require further improvements to be fully functional and be

combined into an overall electrical system. After this revision and additional

development, the electrical system will be ready for Baja use.

The initial proposal of our design suggests the electrical system with a goal of

receiving the GPS and rpm sensor data to be displayed on screen and be saved into

the SD card for vehicle performance analysis. The final prototype of our electrical

system meets most of the fundamental functionality requirements initially proposed by

the mechanical engineering Baja team. The SD card data storage is currently not fully

functioning due to the irregular voltage issues on the SPI clock, but our design team

demonstrated a successful data storage using the developmental microcontroller board

provided by Professor Schafer.

The additional suggestions are made in the Market Design Changes section to

propose the possible changes in our electrical system to be a market-ready product.

Our design team believes that the potential improvements with buttons, better data

storage, better space management and different screen types gives us a lot of room for

continuous improvement of our product

Overall, the electrical system designed by 2014 electrical engineering “Team

Baja” met most of the expectations set aside at the beginning of the project. With a few

improvements and changes, our electrical device will be on its way toward helping the

Team Baja

38 5/7/2014

mechanical engineering Baja team achieve its goal of top-10 finish in the Baja car

competition this year.

Team Baja

39 5/7/2014

8 - References

 SD Card Spec Sheet:

 https://www.sdcard.org/downloads/pls/simplified_specs/part1_410.pdf

 Newhaven LCD Display Spec Sheet:

 http://www.newhavendisplay.com/specs/NHD-0420D3Z-FL-GBW-V3.pdf

 PIC32 Spec Sheet:

 http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf

 Hall Effect Sensor Spec Sheet:

 http://sensing.honeywell.com/index.php?ci_id=50359

 GPS Module Spec Sheet:

http://inmotion.pt/documentation/diydrones/MediaTek_MT3329/mediatek_3329.p
df

Team Baja

40 5/7/2014

9 – Appendix

9.1 MDD File System Library Software

 In addition to the following code which the Baja team developed, out project also

included several header and source files that we downloaded from Microchip within the

MDD File System library. Because these files are very long and are accessible on the

internet, we have chosen to simply list these files rather than including the full code. The

included software files from Microchip are as follows:

 - ***HardwareProfile.h
 - SD-SPI.h
 - struct-queue.h
 - TimeDelay.h
 - GenericTypeDefs.h
 - FSIO.h
 - FSDefs.h
 - FSconfig.h
 - Compiler.h
 - debug_ram_buffer.c
 - ***FSIO.c
 - ***SD-SPI.c
 - TimeDelay.c

***These files were slightly altered for use in our system. Their full documentation
is posted on the Team Baja website under “Files”

Team Baja

41 5/7/2014

9.2 Main Baja Project Code, Demonstration2.c

/***

 Microchip Memory Disk Drive File System

**

 FileName: Demonstration1.c
 Dependencies: FSIO.h
 Processor: PIC32
 Compiler: C32
 Company: Microchip Technology, Inc.

 Software License Agreement

 The software supplied herewith by Microchip Technology Incorporated
 (the ìCompanyî) for its PICmicroÆ Microcontroller is intended and
 supplied to you, the Companyís customer, for use solely and
 exclusively on Microchip PICmicro Microcontroller products. The
 software is owned by the Company and/or its supplier, and is
 protected under applicable copyright laws. All rights are reserved.
 Any use in violation of the foregoing restrictions may subject the
 user to criminal sanctions under applicable laws, as well as to
 civil liability for the breach of the terms and conditions of this
 license.

 THIS SOFTWARE IS PROVIDED IN AN ìAS ISî CONDITION. NO WARRANTIES,
 WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
 TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
 IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
 CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

 Note: This file is included to give you a basic demonstration of
how the
 functions in this library work. Prototypes for these
functions,
 along with more information about them, can be found in
FSIO.h
**
*******/

Team Baja

42 5/7/2014

//DOM-IGNORE-BEGIN
/**
 Change History:
 Rev Description
 ---- -----------------------
 1.3.0 Initial Revision
 1.3.4 Cleaned up the unnecessary part of main() function.
**/
//DOM-IGNORE-END

/***

//NOTE : DISABLE MACRO "SUPPORT_LFN" IN "FSconfig.h" FILE TO WORK WITH
THIS DEMO
 EFFECTIVELY. DISABLING "SUPPORT_LFN" WILL SAVE LOT OF MEMORY
FOR THIS
 DEMO.
**
**********/

#include "FSIO.h"
#include <xc.h>
#include <stdio.h>
#include <stdlib.h>
#include <plib.h>
#include <sys/attribs.h>

unsigned char step =0;
unsigned char ind = 0;
unsigned char complete=0;
unsigned char message[];
unsigned char ck_a=0;
unsigned char ck_b=0;
unsigned long mode;
unsigned long test;
unsigned char gps_file_created;
unsigned char test_file_created;
unsigned long numEg; //counter for engine rpm
unsigned long numWh; //counter for wheel rpm
int butpre1 = 0; //variable to be set to 1 when button is pressed,
debouncing purposes
int butpre2 = 0; //variable to be set to 1 when button is pressed,
debouncing purposes
unsigned char NOFIX[] = {'N','o',' ','F','i','x'};
unsigned char FIX[] = {' ',' ',' ','F','i','x'};
unsigned char RACE[] = {'R','a','c','e'};
unsigned char BUG[] = {'B','U','G'};

Team Baja

43 5/7/2014

unsigned char TEST[] = {'T','e','s','t'};

#if defined (__PIC32MX__)
 #pragma config FPLLMUL = MUL_20 // PLL Multiplier
 #pragma config FPLLIDIV = DIV_2 // PLL Input Divider
 #pragma config FPLLODIV = DIV_1 // PLL Output Divider
 #pragma config FPBDIV = DIV_2 // Peripheral Clock
divisor ****cahnged from DIV_2
 #pragma config FWDTEN = OFF // Watchdog Timer
 #pragma config WDTPS = PS1 // Watchdog Timer
Postscale
 #pragma config FCKSM = CSDCMD // Clock Switching & Fail
Safe Clock Monitor
 #pragma config OSCIOFNC = OFF // CLKO Enable
 #pragma config POSCMOD = OFF // Primary Oscillator
****changed from HS
 #pragma config IESO = OFF // Internal/External
Switch-over
 #pragma config FSOSCEN = OFF // Secondary Oscillator
Enable (KLO was off)
 #pragma config FNOSC = FRCPLL // Oscillator Selection
*****changed from PRIPLL
 #pragma config CP = OFF // Code Protect
 #pragma config BWP = OFF // Boot Flash Write
Protect
 #pragma config PWP = OFF // Program Flash Write
Protect
 #pragma config ICESEL = ICS_PGx1 // ICE/ICD Comm Channel
Select ****changed from ICS_PGx2
 #pragma config DEBUG = ON // Background Debugger
Enable
#endif

void serial_init1(unsigned long value)
{
 U3MODEbits.ON=1;
 U3MODEbits.BRGH=1;
 U3STAbits.UTXEN=1;
 U3STAbits.URXEN=1;
 unsigned long Fpb = 40000000;
 unsigned long num = Fpb/(4*value)-1;
 U3BRG = num;
}

void serial_init6(unsigned long value)

Team Baja

44 5/7/2014

{
 //U6MODEbits.ON=1;
 //U6MODEbits.BRGH=1;
 //U6STAbits.UTXEN=1;
 //U6STAbits.URXEN=1;
 //unsigned long Fpb = 10000000;
 //unsigned long num2 = 4*Fpb/(4*value)-1;
 //U6BRG = num2;
}

unsigned char getu1(void)
{
 while(1)
 {
 if (U3STAbits.URXDA == 1)
 {
 char letter = U3RXREG;
 return letter;
 }
 }
}

unsigned char getu6(void)
{
 //while(1)
 //{
 // if (U6STAbits.URXDA == 1)
 // {
 // char letter3 = U6RXREG;
 // return letter3;
 // }
 //}
}

void putu1(unsigned char letter4)
{
 while(1)
 {
 if (U3STAbits.UTXBF == 0)
 {
 U3TXREG = letter4;
 return;
 }
 }
}

void putu6(unsigned char letter2)
{

Team Baja

45 5/7/2014

 // while(1)
 // {
 // if (U6STAbits.UTXBF == 0)
 // {
 // U6TXREG = letter2;
 // return;
 // }
 // }
}

void enableInter(void)
{
 INTCONbits.MVEC=1;

 IEC0bits.INT1IE=0;
 IEC0bits.INT2IE=0;
 IEC0bits.INT3IE=0;
 IEC0bits.INT4IE=0;

 IFS0bits.INT1IF=0;
 IFS0bits.INT2IF=0;
 IFS0bits.INT3IF=0;
 IFS0bits.INT4IF=0;

 IPC1bits.INT1IP = 7;
 IPC2bits.INT2IP = 6;
 IPC3bits.INT3IP = 4;
 IPC4bits.INT4IP = 3;

 INTCONbits.INT1EP=1;
 INTCONbits.INT2EP=1;
 INTCONbits.INT3EP=1;
 INTCONbits.INT4EP=1;

 IEC0bits.INT1IE=1;
 IEC0bits.INT2IE=1;
 IEC0bits.INT3IE=1;
 IEC0bits.INT4IE=1;

 IEC1bits.U3RXIE=1;
 IFS0bits.INT3IF=0;
 U3STAbits.URXISEL1=0;
 IPC7bits.U3IP=111;
 U3STAbits.URXISEL0=0;
 IFS1bits.U3RXIF=0;
 asm("ei"); //clear interrupt flag
}

Team Baja

46 5/7/2014

void spiInit()
{
 SPI4BRG = (40/(2*2))-1;

 TRISBbits.TRISB12=0; //CS output
 TRISBbits.TRISB14=0; //CLK output
 TRISFbits.TRISF4=1; //MISO input
 TRISFbits.TRISF5=0; //MOSI output

 LATBbits.LATB12=1; //CS high

 unsigned int left;
 left = SPI4BUF;

 SPI4STATCLR=0x40;
 SPI4CONbits.ON=1;
 SPI4CONbits.CKE=1;
 SPI4CONbits.CKP=0;
 SPI4CONbits.SMP=1;
 SPI4CONbits.MSTEN=1;
 SPI4CONbits.SRXISEL=00;
}

unsigned char swap(unsigned char info)
{
 SPI4BUF=info;
 //while(!SPI4STATbits.SPIRBF);
 while(!SPILCD_INT);
 return SPI4BUF;
 SPILCD_INT=0;
}

void sndCMD (unsigned char comd[], unsigned char reply[])
{
 int n; int i;

 //send zero
 swap(0xFF);
 //send six command bytes
 for (n=0;n<6;n++)
 {
 swap(comd[n]);
 }
 //wait until reply is heard

 do

Team Baja

47 5/7/2014

 {
 reply[0] = swap(0xFF);
 } while (reply[0]==0xFF);

 //read reply
 for (i=1;i<6;i++)
 {
 reply[i] = swap(0xFF);
 }

 return;
}

void sdInit ()
{

 spiInit();
 int n;

 unsigned char comd[6];
 comd[0]=0x40;
 comd[1]=0x00;
 comd[2]=0x00;
 comd[3]=0x00;
 comd[4]=0x00;
 comd[5]=0x95;
 unsigned char reply[6];
 reply[0]=0x00;
 reply[1]=0x00;
 reply[2]=0x00;
 reply[3]=0x00;
 reply[4]=0x00;
 reply[5]=0x00;

 //wait
 for (n=0;n<25;n++)
 {
 swap(0xFF);
 }

 //set CS low
 LATBbits.LATB12=0;

 //wait
 for (n=0;n<25;n++)
 {
 swap(0xFF);

Team Baja

48 5/7/2014

 }

 //send CMD0
 sndCMD(comd,reply);

 //send CMD8
 comd[0]=0x48;
 comd[1]=0x00;
 comd[2]=0x00;
 comd[3]=0x01;
 comd[4]=0xAA;
 comd[5]=0x87;
 sndCMD(comd,reply);

 do
 {
 //CMD55 inform SD of application specific command
 comd[0]=0x77;
 comd[1]=0x00;
 comd[2]=0x00;
 comd[3]=0x00;
 comd[4]=0x00;
 comd[5]=0x95;
 sndCMD(comd,reply);

 //ACMD41 to check if SD is out of idle state
 comd[0]=0x69;
 comd[1]=0x40;
 comd[2]=0x00;
 comd[3]=0x00;
 comd[4]=0x00;
 comd[5]=0x95;
 sndCMD(comd,reply);

 } while (reply[0]!=0x00);
}

void sdstuff ()
{
 FSFILE * pointer;
 char path[30];
 char count = 30;
 char * pointer2;
 SearchRec rec;
 unsigned char attributes;
 unsigned char size = 0, i;
 // Turn on the interrupts
//INTEnableSystemMultiVectoredInt();

Team Baja

49 5/7/2014

//SYSTEMConfigPerformance(GetSystemClock());
//mOSCSetPBDIV(OSC_PB_DIV_2);
 //1) Initialize the RTCC
//RtccInit();
 //while(RtccGetClkStat()!=RTCC_CLK_ON); // wait
for the SOSC to be actually running and RTCC to have its clock source
//DelayMs(1000); // could
wait here at most 32ms
//RtccOpen(0x10073000, 0x07011602, 0);

 //2) Initialize SD Card
 sdInit();

 SPI4BRG = 9;

 //TRISBbits.TRISB10=0; //WE
 //PORTBbits.RB10=1; //WE
 //TRISBbits.TRISB11=1; //CD
 //PORTBbits.RB11=1; //CD

 TRISBbits.TRISB12=0; //CS output
 TRISBbits.TRISB14=0; //CLK output
 TRISFbits.TRISF4=1; //MISO input
 TRISFbits.TRISF5=0; //MOSI output

 SD_CS=1;

 unsigned int empty_buff;
 empty_buff = SPI4BUF;

 SPI4CONbits.CKP = 0;
 SPI4CONbits.CKE = 1;
 SPI4CONbits.SMP=1;
 SPI4CONbits.MSTEN=1;

 SPI4CONbits.ON=1;

 /**

 int n;

 unsigned char comd[6];
 comd[0]=0x40;
 comd[1]=0x00;
 comd[2]=0x00;
 comd[3]=0x00;
 comd[4]=0x00;

Team Baja

50 5/7/2014

 comd[5]=0x95;
 unsigned char reply[6];
 reply[0]=0x00;
 reply[1]=0x00;
 reply[2]=0x00;
 reply[3]=0x00;
 reply[4]=0x00;
 reply[5]=0x00;

 //wait
 for (n=0;n<25;n++)
 {
 swap(0xFF);
 }

 //set CS low
 SD_CS=0;

 //wait
 for (n=0;n<25;n++)
 {
 swap(0xFF);
 }

 //send CMD0

 sndCMD(comd,reply);

 //send CMD8
 comd[0]=0x48;
 comd[1]=0x00;
 comd[2]=0x00;
 comd[3]=0x01;
 comd[4]=0xAA;
 comd[5]=0x87;
 sndCMD(comd,reply);

 do
 {
 //CMD55 inform SD of application specific command
 comd[0]=0x77;
 comd[1]=0x00;
 comd[2]=0x00;
 comd[3]=0x00;
 comd[4]=0x00;

Team Baja

51 5/7/2014

 comd[5]=0x95;
 sndCMD(comd,reply);

 //ACMD41 to check if SD is out of idle state
 comd[0]=0x69;
 comd[1]=0x40;
 comd[2]=0x00;
 comd[3]=0x00;
 comd[4]=0x00;
 comd[5]=0x95;
 sndCMD(comd,reply);

 } while (reply[0]!=0x00);

 //3) Media Detect
 //while(!MDD_SDSPI_MediaDetect()); //
Initialize the library
 //4) FSInit
//while (!FSInit());

 */
SD_WE_TRIS=0;
SD_WE=0x00;
}

void sd_ammend (char toSD[])
{
#ifdef ALLOW_WRITES
 char newline[]="\r";
 FSFILE * pointer;
 int length2 = strlen(toSD);
 pointer = FSfopen("GPSDATA.csv","a");
 FSfwrite(toSD,1,length2,pointer);
 FSfclose(pointer);
#endif
}

void sd_fammend (unsigned long tester)
{
#ifdef ALLOW_WRITES
 char newline[]="\r";
 FSFILE * pointer;
 pointer = FSfopen("GPSDATA.csv","a");
 FSfprintf(pointer,"%1d",tester);
 FSfclose(pointer);
#endif
}

Team Baja

52 5/7/2014

void lap_ammend (char toSD[])
{
#ifdef ALLOW_WRITES
 char newline[]="\r";
 FSFILE * pointer;
 int length2 = strlen(toSD);
 pointer = FSfopen("LAPTIMES.csv","a");
 FSfwrite(toSD,1,length2,pointer);
 FSfclose(pointer);
#endif
}

void lap_fammend (unsigned long tester)
{
#ifdef ALLOW_WRITES
 char newline[]="\r";
 FSFILE * pointer;
 pointer = FSfopen("LAPTIMES.csv","a");
 FSfprintf(pointer,"%1d",tester);
 FSfclose(pointer);
#endif
}

void sd_try(float try)
{
 #ifdef ALLOW_WRITES
 FSFILE * pointer;
 pointer = FSfopen("GPSDATA.csv","a");
 FSfprintf(pointer,"%.3f",try);
 FSfclose(pointer);
#endif
}

void sd_format (unsigned long UTCtime)
{
#ifdef ALLOW_WRITES
 char newline[]="\r";
 char topline[]="Time (sec),Speed ((m/s)*10^2),Latitude
((deg)*10^6),Longitude ((deg)*10^6),Engine rpm,Wheel rpm";
 char lapline[]="Lap,Lap Time (sec)\r";
 FSFILE * pointer1;
 FSFILE * pointer2;

 int length1 = strlen(topline);
 int length2 = strlen(lapline);

 if (gps_file_created==0)

Team Baja

53 5/7/2014

 {
 pointer1 = FSfopen("GPSDATA.csv","w");
 FSfwrite(topline,1,length1,pointer1);
 FSfclose(pointer1);

 pointer2 = FSfopen("LAPTIMES.csv","w");
 FSfwrite(lapline,1,length2,pointer2);
 FSfclose(pointer2);
 gps_file_created=1;
 }
 else
 {
 sd_ammend("New Data Set,UTC Time:,");
 sd_fammend(UTCtime);
 sd_ammend("\r");

 sd_ammend("New Data Set,UTC Time:,");
 sd_fammend(UTCtime);
 sd_ammend("\r");
 }
#endif
}

void __ISR(_UART_3_VECTOR, IPL7AUTO) u1interrupt(void)
{

 unsigned char disp1;
 disp1=getu1(); //get input from
UART1 buffer
 //putu6(disp1);
//send to UART6 for terminal
 IFS1bits.U3RXIF=0; //clear interrupt
flag

 switch (step)
 {
 case 0:

 if (disp1==0xD0)
 {
 step=1;
 }
 else
 {
 step=0;
 }

Team Baja

54 5/7/2014

 break;
 case 1:
 if (disp1==0xDD)
 {
 step=2;
 }
 else
 {
 step=0;
 }
 break;
 case 2:
 if (disp1==0x20)
 {
 ck_a=disp1;
 ck_b=ck_a;
 ind=0;
 step=3;
 }
 else
 {
 step=0;
 }
 break;
 case 3:
 message[ind]=disp1;
 ck_a=ck_a+disp1;
 ck_b=ck_b+ck_a;
 ind=ind+1;
 if (ind==32)
 {
 step=4;
 }
 break;
 case 4:
 if (ck_a==disp1)
 {
 step=5;
 }
 else
 {
 step=0;
 }
 break;
 case 5:
 if (ck_b==disp1)
 {
 complete=1;

Team Baja

55 5/7/2014

 }
 step=0;
 break;
 default:
 step=0;
 }
}

void __ISR(_EXTERNAL_1_VECTOR, IPL7AUTO) INT1Interrupt(void) //LAP
{
 //whatever the lap button does
 butpre1 = 1;
 IEC0bits.INT1IE=0;
 IFS0bits.INT1IF=0;
}

void __ISR(_EXTERNAL_2_VECTOR, IPL7AUTO) INT2Interrupt(void) //DONE
{
 //whatever the stop button does
 butpre2 = 1;
 IEC0bits.INT2IE=0;
 IFS0bits.INT2IF=0;
 test=1;
}

void __ISR(_EXTERNAL_3_VECTOR, IPL7AUTO) INT3Interrupt(void) //ENGINE
RPM
{
 numEg=numEg+1;
 IFS0bits.INT3IF=0;
}

void __ISR(19, IPL7AUTO) INT4Interrupt(void) //WHEEL RPM
{
 numWh=numWh+1;
 IFS0bits.INT4IF=0;
}

void excel_setup (unsigned long fix, unsigned long date, unsigned long
UTCtime)
{
 unsigned long yr;
 unsigned long day;
 unsigned long month;

 day = date/10000;
 date = date - day*10000;
 month = date/100;

Team Baja

56 5/7/2014

 date = date - month*100;
 yr = date;

 sd_format(UTCtime);
 if (fix==3)
 {
 sd_ammend(",");
 sd_fammend(month);
 sd_ammend("/");
 sd_fammend(day);
 sd_ammend("/");
 sd_fammend(yr);
 sd_ammend(",");
 }
 else
 {
 sd_ammend(",DATE UNAVAILABLE");
 }
 sd_ammend("\r");
}

void gps_setting (unsigned char setting[])
{
 int n=0;
 while(setting[n]!='\0')
 {
 putu1(setting[n]);
 n=n+1;
 }
}

unsigned long value(unsigned int index)
{
 unsigned long value1;
 value1 = message[index];
 value1 = (value1<<8)+message[index-1];
 value1 = (value1<<8)+message[index-2];
 value1 = (value1<<8)+message[index-3];
 return value1;
}

int main(int argc, char** argv)
{

 numWh = 0;
 numEg = 0;

 //initialize UART for GPS and corresponding interrupts

Team Baja

57 5/7/2014

 TRISGbits.TRISG6=1;
 TRISGbits.TRISG8=0;
 TRISGbits.TRISG7=1;
 TRISGbits.TRISG9=0;
 TRISDbits.TRISD8=1;
 TRISDbits.TRISD9=1;
 TRISDbits.TRISD10=1;
 TRISDbits.TRISD11=1
 enableInter();

 serial_init1(38400);

 gps_setting("$PGCMD,16,0,0,0,0,0*6A\r\n");

 //initialize SD card and SPI
 LCD_init();
 //sdstuff();

 //Delayms(30);
// int g=0;
//
// SD_CS =0;
// while(g<15)
// {
// swap('V');
// g=g+1;
// }
// SD_CS =1;

 //initialize gps and set in binary mode

 //variable declarations
 unsigned long latit;
 unsigned long longit;
 unsigned long date;
 unsigned long speed;
 unsigned long fix;
 unsigned long t=0;
 unsigned long laptime=0;
 unsigned long laps=0;
 unsigned char formatted=0;
 unsigned long time_of_last_press;
 unsigned long butdec1 = 0; //counter to debounce button
 unsigned long butdec2 = 0; //counter to debounce button

 char PREVLAP[4];

Team Baja

58 5/7/2014

 char SPEED[3];
 char testspd[3];
 char DIG0[1];
 char DIG1[1];
 char DIG2[1];
 char DIG3[1];
 unsigned long UTCtime;
 mode=1;
 test=0;
 gps_file_created=0;
 unsigned long prevLAP=0;
 unsigned long speed2 = 2000;
 unsigned long dig0;
 unsigned long dig1;
 unsigned long dig2;
 unsigned long dig3;
 unsigned int fixset=0;
 unsigned int nofixset=0;
 unsigned int modeset=0;
 unsigned int velocityset=0;

 while(1)
 {
 //snd_cmd(0x51,0x00);
 //string_snd(tester,3);
 if (butpre1 == 1) //resets counter if button is pressed
 {
 butdec1 = 0;
 butpre1 = 0;
 test=2;
 }
 if (butpre2 == 1) //resets other counter if button is pressed
 {
 butdec2 = 0;
 butpre2 = 0;
 }
 if(butdec1 == 30000) //restarts the lap button interrupt
 {
 IFS0bits.INT1IF=0;
 IEC0bits.INT1IE=1;
 butdec1 = 0;
 }
 if(butdec2 == 30000) //restarts the stop button interrupt
 {
 IFS0bits.INT2IF=0;
 IEC0bits.INT2IE=1;

Team Baja

59 5/7/2014

 butdec2 = 0;
 }
 ++butdec1;
 ++butdec2;

 //lap button activated
 if ((test==2)&&(mode==1))
 {
 //snd_cmd(0x45,0x51);
 //string_snd(tester,3);

 prevLAP=t;
 t=0;

 sprintf(PREVLAP, "%ld", prevLAP);
 snd_cmd(0x45,0x5E);
 //Delayms(10);
 if(prevLAP < 10)
 {
 string_snd(PREVLAP,1);
 }
 else if(prevLAP < 100)
 {
 string_snd(PREVLAP,2);
 }
 else if(prevLAP<1000)
 {
 string_snd(PREVLAP,3);
 }
 else if(prevLAP>1000)
 {
 string_snd(PREVLAP,4);
 }
 else
 {
 string_snd(PREVLAP,0);
 }

// laps++;
// laptime=t-time_of_last_press;
// time_of_last_press=t;
//
//// lap_fammend(laps);
//// lap_ammend(",");
//// lap_fammend(laptime);

Team Baja

60 5/7/2014

//// lap_ammend("\r");
//// //change screen display

 test=0;
 }

 //test mode activated
 if (test==1)
 {
 //formatted=0;
 //display speed on screen

 snd_cmd(0x45,0x46);
 string_snd(TEST,4);
 //when lap is pressed
 //create file if first time
 //delay 100ms
 //calculate rpm
 //output time and rpm to file
 }

 //race mode activated
 if (test==0)
 {
 if (modeset==0)
 {
 //Delayms(5);
 snd_cmd(0x45,0x46);
 //Delayms(10);
 string_snd(RACE,4);
 modeset=1;
 }

 if (complete==1)
 {

 //output rps
 char ERPS[3];
 //Delayms(5);
 sprintf(ERPS, "%ld", numEg);
 snd_cmd(0x45,0x52);
 //Delayms(10);
 if(numEg < 10)
 {
 string_snd(ERPS,1);
 }
 else if((numEg < 100)&&(numEg>9))
 {

Team Baja

61 5/7/2014

 string_snd(ERPS,2);
 }
 else
 {
 string_snd(ERPS,3);
 }
 numEg=0;

 char RPS[3];
 //Delayms(5);
 sprintf(RPS, "%ld", numWh);
 snd_cmd(0x45,0x12);
 // Delayms(10);
 if(numWh < 10)
 {
 string_snd(RPS,1);
 }
 else if((numWh < 100)&&(numWh>9))
 {
 string_snd(RPS,2);
 }
 else
 {
 string_snd(RPS,3);
 }
 numWh=0;

 //output time
 t++;
 //sendValue(t,0x1D);
 char T[4];
 //Delayms(5);
 sprintf(T, "%ld", t);
 snd_cmd(0x45,0x1D);
 //Delayms(20);
 if(t < 10)
 {
 string_snd(T,1);
 }
 else if(t < 100)
 {
 string_snd(T,2);
 }
 else if(t < 1000)
 {
 string_snd(T,3);
 }

Team Baja

62 5/7/2014

 else
 {
 string_snd(T,4);
 }

 //extract values from message
 speed = value(15);
 latit = value(3);
 longit = value(7);
 date = value(25);
 UTCtime = value(29);
 fix = message[21];

 if (fix!=3)
 {
 if (nofixset==0)
 {
 //Delayms(5);
 snd_cmd(0x45,0x22);
 //Delayms(10);
 string_snd(NOFIX,6);
 nofixset=1;
 fixset=0;
 }
 }
 else if (fix==3)
 {
 if (fixset==0)
 {
 //Delayms(5);
 snd_cmd(0x45,0x22);
 //Delayms(10);
 string_snd(FIX,6);
 fixset=1;
 nofixset=0;
 }
 }

 if (mode==0)
 {
 snd_cmd(0x45,0x06);
 //Delayms(10);
 string_snd(BUG,3);
 }

 if (mode==1)

Team Baja

63 5/7/2014

 {

 //snd_cmd(0x45,0x46);
 //string_snd(RACE,6);

 //if this is the first message received,
format the two excel sheets
// if (formatted==0)
// {
//// excel_setup(fix,date,UTCtime);
// formatted=1;
// }

 //output data if gps fix exists
 if (fix==3)
 {
 //calc erpm and wrpm based on counters

// sd_fammend(t);
// sd_ammend(",");
// sd_fammend(speed);
// sd_ammend(",");
// sd_fammend(latit);
// sd_ammend(",");
// sd_fammend(longit);
// //sd_ammend(",");
// //sd_fammend(erpm);
// //sd_ammend(",");
// //sd_fammend(wrpm);
// sd_ammend("\r");

 //screen displays speed and lap times
 //
 long speed3=speed;
 speed3=speed3*224;

 //sprintf(testspd,"%ld",speed3);
 //Delayms(5);
 snd_cmd(0x45,0x05);
 //Delayms(10);
 dig0=(speed3/100000)%10;
 dig1=(speed3/10000)%10;
 dig2=(speed3/1000)%10;
 dig3=speed3%1000;
 sprintf(DIG0,"%ld",dig0);
 sprintf(DIG1,"%ld",dig1);
 sprintf(DIG2,"%ld",dig2);
 sprintf(DIG3,"%ld",dig3);

Team Baja

64 5/7/2014

 if (DIG0!=0)
 {
 string_snd(DIG0,1);
 }
 string_snd(DIG1,1);
 LCD_snd('.');
 string_snd(DIG2,1);
 string_snd(DIG3,1);
 //snd_cmd(0x45,SPEED[0]);
 //snd_cmd(0x45,'.');
 //snd_cmd(0x45,SPEED[1]);
 //snd_cmd(0x45,SPEED[2])
 velocityset=0;
 }
 else
 {
 if (velocityset==0);
 {
 //Delayms(5);
 snd_cmd(0x45,0x05);
 //Delayms(10);
 dig0=0;
 dig1=0;
 dig2=0;
 dig3=0;
 sprintf(DIG0,"%ld",dig0);
 sprintf(DIG1,"%ld",dig1);
 sprintf(DIG2,"%ld",dig2);
 sprintf(DIG3,"%ld",dig3);
 string_snd(DIG0,1);
 string_snd(DIG1,1);
 LCD_snd('.');
 string_snd(DIG2,1);
 string_snd(DIG3,1);
 // sd_fammend(t);
 // sd_ammend(",");
 // sd_ammend("NO GPS FIXXX0");
 // sd_ammend("\r");
 }
 velocityset=1;
 //screen displays zero for speed and
normal lap time
 }

 complete=0;
 }
 }

Team Baja

65 5/7/2014

 }
 }
 //return (EXIT_SUCCESS);
}

Team Baja

66 5/7/2014

9.3 LCD Code, newmain.c

/*
 * File: newmain.c
 * Author: mmanno
 *
 * Created on September 30, 2013, 7:23 PM
 */

#include <xc.h>
#include <stdio.h>
#include <stdlib.h>

#define SPIBRG SPI3BRG
#define SPIBUF SPI3BUF
#define SPICLOCK TRISDbits.TRISD1
#define SPIOUT TRISDbits.TRISD3
#define CS_TRIS TRISDbits.TRISD4
#define SPIIN TRISDbits.TRISD2
#define CS LATDbits.LATD4
#define SPILCD_INT IFS0bits.SPI3RXIF

unsigned char Velocity[] = {'V','e','l',':'};
unsigned char Mode[] = {'M','o','d','e',':'};
//unsigned char Test[] = {'T','e','s','t'};
//unsigned char Rest[] = {'R','e','s','t'};
//unsigned char Race[] = {'R','a','c','e'};
unsigned char Fix[] = {'F','i','x'};
unsigned char Lap[] = {'L','a','p'};
//unsigned char No[] = {'N','o'};
//unsigned char NA[] = {'N','/','A'};
//unsigned char Space[] = {' ',' '};
unsigned char Current_Lap[] = {'C','u','r','r','e','n','t',':'};
unsigned char Previous_Lap[] = {'P','r','e','v','i','o','u','s',':'};
unsigned char rps[] = {'R','P','S',':'};

void LCD_SPI_init()
{
 SPIBRG = 85;
//SCK to 59kHz
 //SPIOUT = 0;
//MOSI output
 //SPIIN = 1;
//MISO input
 //SPICLOCK = 0;
//CLK output

Team Baja

67 5/7/2014

 CS_TRIS = 0;
//CS output

 int rData = SPI3BUF;

 SPI3CONbits.CKP = 1;
 SPI3CONbits.CKE = 0;
 SPI3CONbits.SMP=0;
 SPI3CONbits.MSTEN=1;

 SPI3CONbits.ON=1;

 SPILCD_INT=0;
 CS=1;
}

unsigned char LCD_snd(unsigned char info)
{
 CS=0;
 SPI3BUF = info;
 while(!SPI3STATbits.SPIRBF);
 return SPI3BUF;
 CS=1;
}

delay_millisec(int input)
{
 int i=0;
 while (i<input*1000)
 {
 i=i+1;
 }
}

string_snd(unsigned char info[],int length)
{
 int i;
 for(i=0;i<length;i++)
 {
 LCD_snd(info[i]);
 delay_millisec(1);
 }

 delay_millisec(10);
}

Team Baja

68 5/7/2014

void snd_cmd(unsigned char cmd, unsigned char location)
{
 LCD_snd(0xFE);
 delay_millisec(8);
 LCD_snd(cmd);

 if(cmd == 0x51)
 {
 delay_millisec(4);
 }

 if(cmd == 0x45)
 {
 LCD_snd(location);

 }

 else
 {
 delay_millisec(4);
 }

}

void LCD_init()
{

// int test = 0;
// int mode = 0;
// int fix = 3;
//
// unsigned long num;
// char Vel[10];
// num = 42424242;
// sprintf(Vel, "%ld", num);

 //initialize SPI
 LCD_SPI_init();
 delay_millisec(100);

 snd_cmd(0x51,0x00);
 string_snd(Velocity,4);

 snd_cmd(0x45,0x0D);
 string_snd(rps,4);

Team Baja

69 5/7/2014

 snd_cmd(0x45,0x40);
 string_snd(Mode,5);

 snd_cmd(0x45,0x25);
 string_snd(Fix,3);

 snd_cmd(0x45,0x14);
 string_snd(Current_Lap,8);

 snd_cmd(0x45,0x54);
 string_snd(Previous_Lap,9);

// snd_cmd(0x45,0x0A);
// string_snd(Vel,2); //Will eventually be velocity
//
// if(test == 1){
// snd_cmd(0x45,0x46);
// string_snd(Test,4);
// }
//
// if(test == 0){
// if(mode == 0){
// snd_cmd(0x45,0x46);
// string_snd(Rest,4);
// }
// if(mode == 1){
// snd_cmd(0x45,0x46);
// string_snd(Race,4);
// }
// }
//
//
//
// if(fix == 3){
// snd_cmd(0x45,0x4E);
// string_snd(Space,2);
// }
// if(fix != 3){
// snd_cmd(0x45,0x4E);
// string_snd(No,2);
// }
//
// snd_cmd(0x45,0x1D);
// string_snd(NA,3); // Will eventually be current lap time
//
// snd_cmd(0x45,0x5E);
// string_snd(NA,3); //Will eventually be previous lap time
}

Team Baja

70 5/7/2014

